Skip to Content

Vision-Language Models for Clinical Applications

Vision-Language Models (VLMs) like CLIP have transformed AI by learning from image-text pairs. In healthcare, VLMs enable powerful applications: radiology report generation, zero-shot diagnosis, and patient-reported symptom analysis.

Why VLMs for Healthcare?

The Natural Pairing Problem

Healthcare data naturally comes in vision-language pairs:

Radiology: Image + Report

[Chest X-Ray] ↔ "No acute cardiopulmonary process. Heart size normal."

Pathology: Slide + Diagnosis

[Tissue Sample] ↔ "Adenocarcinoma, moderately differentiated"

Dermatology: Photo + Description

[Skin Lesion] ↔ "2cm pigmented lesion, irregular borders, asymmetric"

Patient Symptoms: Drawing + Text

[Symptom Sketch] ↔ "Sharp chest pain radiating to left arm"

Advantages Over Single-Modality Models

CapabilityImage-Only ModelText-Only ModelVLM (Combined)
Zero-shot diagnosis❌ Needs labeled images❌ Lacks visual info✅ Natural language queries
Rare conditions❌ Needs many examples❌ No visual confirmation✅ Text descriptions work
Interpretability❌ Attention maps only✅ Text explanations✅ Both modalities
Multi-modal search❌ Image only❌ Text only✅ Cross-modal retrieval
Training efficiency❌ Needs pixel labels❌ Needs comprehensive text✅ Natural pairings

Key Healthcare VLM Applications

1. Radiology Report Generation

Problem: Radiologists spend hours writing reports for imaging studies.

VLM Solution: Generate reports from images

# Image → Text generation chest_xray = load_image("chest_xray.jpg") report = vlm.generate_report(chest_xray) # Output: "Cardiomediastinal silhouette within normal limits. # No acute infiltrate or effusion. No pneumothorax."

State-of-the-art: Microsoft BioViL, R2GenCMN

2. Zero-Shot Diagnosis

Problem: New diseases emerge (COVID-19), labeled data scarce.

VLM Solution: Diagnose using text descriptions only

# No training examples needed - just text description query = "Ground-glass opacities in bilateral lungs consistent with viral pneumonia" # Compare image to text description image_emb = vlm.encode_image(chest_xray) text_emb = vlm.encode_text(query) similarity = cosine_similarity(image_emb, text_emb) # High similarity → likely match if similarity > threshold: print("Consistent with COVID-19 pneumonia")

Benefit: No retraining needed for new conditions!

Problem: Find similar cases using text or image queries.

VLM Solution: Search images using text, or text using images

# Text query → Find matching images query = "pulmonary embolism with right heart strain" matching_images = vlm.search_images_by_text(query, image_database) # Image query → Find similar reports query_image = load_image("patient_xray.jpg") similar_reports = vlm.search_text_by_image(query_image, report_database)

4. Patient-Reported Symptom Analysis

Novel application: Pair patient drawings with symptom descriptions

# Patient provides: symptom_sketch = patient_drawing # 3D body sketch with symptom locations symptom_text = "Burning sensation in upper abdomen after meals" # VLM predicts outcome outcome_prob = vlm.predict(symptom_sketch, symptom_text) # Predicts: Likely gastroesophageal reflux disease (GERD)

Advantage: Captures patient perspective (not just clinical measurements)

CLIP-Style Architecture for Healthcare

Dual-Encoder Design

import torch import torch.nn as nn from transformers import AutoModel from torchvision.models import resnet50 class ClinicalVLM(nn.Module): """ CLIP-style vision-language model for healthcare Pre-trains on (medical_image, clinical_text) pairs using contrastive learning """ def __init__(self, embed_dim=512): super().__init__() # ===== Vision Encoder ===== # Option 1: CNN (ResNet) self.vision_encoder = resnet50(pretrained=True) self.vision_encoder.fc = nn.Identity() vision_dim = 2048 # Option 2: Vision Transformer (ViT) # from transformers import ViTModel # self.vision_encoder = ViTModel.from_pretrained('google/vit-base-patch16-224') # vision_dim = 768 # Project to shared embedding space self.vision_projection = nn.Linear(vision_dim, embed_dim) # ===== Text Encoder ===== # ClinicalBERT for medical text understanding self.text_encoder = AutoModel.from_pretrained( 'emilyalsentzer/Bio_ClinicalBERT' ) text_dim = 768 # BERT hidden size # Project to shared embedding space self.text_projection = nn.Linear(text_dim, embed_dim) # ===== Learnable Temperature ===== # Temperature for contrastive loss (like CLIP) self.temperature = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) def encode_image(self, image): """ Encode medical image to embedding Args: image: (batch, 3, H, W) - medical image Returns: image_emb: (batch, embed_dim) - normalized embedding """ # Extract visual features features = self.vision_encoder(image) # (batch, vision_dim) # Project to shared space emb = self.vision_projection(features) # (batch, embed_dim) # Normalize (important for cosine similarity) emb = F.normalize(emb, dim=-1) return emb def encode_text(self, text_tokens): """ Encode clinical text to embedding Args: text_tokens: dict - tokenized text Returns: text_emb: (batch, embed_dim) - normalized embedding """ # Extract text features output = self.text_encoder(**text_tokens) features = output.pooler_output # (batch, text_dim) # Project to shared space emb = self.text_projection(features) # (batch, embed_dim) # Normalize emb = F.normalize(emb, dim=-1) return emb def forward(self, images, text_tokens): """ Compute contrastive loss (CLIP-style) Args: images: (batch, 3, H, W) - medical images text_tokens: dict - tokenized clinical text Returns: loss: scalar - bidirectional contrastive loss """ batch_size = images.shape[0] # Encode both modalities image_emb = self.encode_image(images) # (batch, embed_dim) text_emb = self.encode_text(text_tokens) # (batch, embed_dim) # Compute similarity matrix (scaled by temperature) logits = image_emb @ text_emb.T / self.temperature.exp() # logits: (batch, batch) - similarity between all pairs # Labels: diagonal elements are positive pairs labels = torch.arange(batch_size, device=logits.device) # Bidirectional contrastive loss loss_i2t = F.cross_entropy(logits, labels) # Image → Text loss_t2i = F.cross_entropy(logits.T, labels) # Text → Image loss = (loss_i2t + loss_t2i) / 2 return loss

Contrastive Pre-Training

Train on large corpus of (image, report) pairs:

def pretrain_clinical_vlm(model, dataset, epochs=50): """ Pre-train VLM on (medical_image, clinical_text) pairs Dataset: MIMIC-CXR (377,000 chest X-rays + reports), OpenI, PadChest, etc. """ optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4) for epoch in range(epochs): for images, texts in dataset: # Contrastive loss loss = model(images, texts) optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate zero-shot performance if epoch % 5 == 0: zero_shot_acc = evaluate_zero_shot(model, test_dataset) print(f"Epoch {epoch}: Zero-shot accuracy = {zero_shot_acc:.3f}")

Zero-Shot Clinical Applications

Zero-Shot Classification

No training examples needed - just text descriptions:

@torch.no_grad() def zero_shot_diagnosis(model, image, candidate_diagnoses): """ Classify image using text descriptions (no labeled examples) Args: image: Medical image tensor candidate_diagnoses: List of text descriptions Returns: predicted_diagnosis: Most likely match probabilities: Confidence for each diagnosis """ # Encode image image_emb = model.encode_image(image.unsqueeze(0)) # (1, embed_dim) # Encode all candidate diagnoses diagnosis_embs = [] for diagnosis_text in candidate_diagnoses: tokens = tokenizer(diagnosis_text, return_tensors='pt') text_emb = model.encode_text(tokens) diagnosis_embs.append(text_emb) diagnosis_embs = torch.cat(diagnosis_embs, dim=0) # (num_diagnoses, embed_dim) # Compute similarities similarities = image_emb @ diagnosis_embs.T # (1, num_diagnoses) # Convert to probabilities probabilities = F.softmax(similarities / temperature, dim=-1) # Predict predicted_idx = probabilities.argmax() predicted_diagnosis = candidate_diagnoses[predicted_idx] return predicted_diagnosis, probabilities # Example usage image = load_chest_xray("patient.jpg") candidates = [ "Normal chest X-ray with no acute findings", "Pneumonia with consolidation in right lower lobe", "Congestive heart failure with pulmonary edema", "Pneumothorax on the left side" ] diagnosis, probs = zero_shot_diagnosis(model, image, candidates) print(f"Predicted: {diagnosis} (confidence: {probs.max():.2f})")

Prompt Engineering for Clinical Tasks

Like GPT prompting, but with medical terminology:

# Good prompts: Specific, medical terminology, structured good_prompts = [ "Chest X-ray demonstrating acute pulmonary edema with bilateral infiltrates", "CT scan revealing acute ischemic stroke in left MCA territory", "Dermatology image showing melanoma with irregular borders and variegated color" ] # Poor prompts: Vague, non-medical language poor_prompts = [ "Lung problem", # Too vague "Heart issue", # Non-specific "Bad skin" # Lacks clinical detail ] # Template ensembles (like CLIP) def create_prompt_ensemble(diagnosis): """Generate multiple prompt variations""" templates = [ f"This is a case of {diagnosis}", f"Findings consistent with {diagnosis}", f"Radiographic appearance of {diagnosis}", f"Clinical presentation suggests {diagnosis}" ] return templates # Average across prompts for robustness ensemble_probs = [] for template in create_prompt_ensemble("pneumonia"): prob = model.predict(image, template) ensemble_probs.append(prob) final_prob = torch.stack(ensemble_probs).mean()

Differences from General VLMs

Healthcare VLMs face unique challenges compared to CLIP on natural images:

AspectCLIP (Natural Images)Healthcare VLMs
Training data400M web pairs100K-1M medical pairs
DomainNatural images + captionsMedical images + reports
VocabularyGeneral EnglishMedical terminology
Batch size32,768 (huge!)64-256 (memory limits)
Image resolution224×224512×512 to 2048×2048 (high-res)
Annotation qualityNoisy web textExpert-written reports
ValidationAccuracy metricsClinical utility, safety
InterpretabilityNice to haveRequired for deployment
FairnessImportantCritical (health equity)

Adaptations for Healthcare

1. Domain-Specific Pre-Training

# Start with ImageNet + general BERT # Fine-tune on medical domain first vision_encoder = resnet50(pretrained=True) # ImageNet text_encoder = ClinicalBERT # Pre-trained on MIMIC notes # Then: contrastive pre-training on (image, report) pairs

2. Smaller Batch Sizes with Momentum Encoders (like MoCo)

class MomentumClinicalVLM(nn.Module): """ Use momentum encoders for large effective batch size (when GPU memory limits actual batch size) """ def __init__(self): self.online_encoder = ClinicalVLM() self.momentum_encoder = copy.deepcopy(self.online_encoder) # Freeze momentum encoder (updated via EMA) for param in self.momentum_encoder.parameters(): param.requires_grad = False # Queue of previous embeddings (acts as larger batch) self.register_buffer("queue", torch.randn(65536, embed_dim)) @torch.no_grad() def update_momentum_encoder(self, momentum=0.999): """Exponential moving average update""" for param_q, param_k in zip( self.online_encoder.parameters(), self.momentum_encoder.parameters() ): param_k.data = param_k.data * momentum + param_q.data * (1 - momentum)

3. High-Resolution Support

# Medical images often need higher resolution high_res_transforms = T.Compose([ T.Resize(512), # vs 224 for CLIP T.CenterCrop(512), T.ToTensor(), T.Normalize(mean=[0.485], std=[0.229]) ])

Evaluation Metrics

Standard VLM Metrics

from sklearn.metrics import roc_auc_score, accuracy_score # Zero-shot classification accuracy zero_shot_acc = accuracy_score(y_true, y_pred) # Image-text retrieval # - Image→Text: Given image, retrieve correct report # - Text→Image: Given report, retrieve correct image recall_at_k = compute_recall_at_k(image_emb, text_emb, k=[1, 5, 10])

Clinical-Specific Metrics

# Clinical utility (beyond accuracy) def evaluate_clinical_utility(model, test_data): """ Metrics that matter for clinical deployment """ metrics = {} # 1. AUROC (discrimination ability) metrics['auroc'] = roc_auc_score(y_true, y_pred_prob) # 2. Sensitivity at high specificity # (Catch critical cases without too many false alarms) fpr, tpr, thresholds = roc_curve(y_true, y_pred_prob) sens_at_95spec = tpr[np.where(fpr <= 0.05)[0][-1]] metrics['sensitivity_at_95spec'] = sens_at_95spec # 3. Calibration (are probabilities accurate?) prob_true, prob_pred = calibration_curve(y_true, y_pred_prob, n_bins=10) metrics['calibration_error'] = np.abs(prob_true - prob_pred).mean() # 4. Fairness across demographics for demographic in ['age', 'sex', 'race']: group_aurocs = {} for group in np.unique(test_data[demographic]): mask = test_data[demographic] == group group_aurocs[group] = roc_auc_score(y_true[mask], y_pred_prob[mask]) metrics[f'{demographic}_disparity'] = max(group_aurocs.values()) - min(group_aurocs.values()) return metrics

Best Practices

Do:

  • Start with domain-specific pre-trained encoders (ClinicalBERT, medical image models)
  • Use contrastive pre-training on large (image, report) corpora
  • Implement prompt engineering and ensembling for zero-shot
  • Validate with clinical experts (accuracy ≠ clinical utility)
  • Evaluate fairness across demographics
  • Provide interpretability (attention maps, similarity scores)
  • Test on external datasets (hospital generalization)

Don’t:

  • Train from scratch (too little data)
  • Ignore domain shift between hospitals/scanners
  • Deploy without clinical validation
  • Use only accuracy as evaluation metric
  • Forget calibration (probability correctness)
  • Assume zero-shot works for all tasks (validate!)
  • Ignore rare but critical conditions

Real-World Clinical VLMs

BioViL (Microsoft Research, 2022)

Architecture: CLIP-like with domain-specific improvements

  • Vision: ResNet-50 pre-trained on CheXpert
  • Text: PubMedBERT fine-tuned on MIMIC-CXR
  • Dataset: 217,000 chest X-ray + report pairs

Performance:

  • Zero-shot: 81.5% accuracy on 14 chest X-ray findings
  • Outperforms supervised baselines on 5 tasks

MedCLIP (Wang et al., 2022)

Innovation: Semantic matching instead of exact text matching

  • Handles synonym variations (“SOB” vs “dyspnea”)
  • Medical entity extraction from reports
  • Decouples vision learning from text noise

Results:

  • 92.1% accuracy on zero-shot chest X-ray classification
  • Generalizes across 8 external datasets

BiomedCLIP (Tiu et al., 2023)

Scale: Largest biomedical VLM

  • Dataset: 15M biomedical figure-caption pairs from PubMed
  • Covers diverse imaging modalities (microscopy, radiology, etc.)

Applications:

  • Zero-shot medical image classification
  • Figure-text retrieval in scientific papers
  • Medical visual question answering

Future Directions

  1. Multimodal fusion beyond image+text: Add EHR sequences, genomics, waveforms
  2. Few-shot adaptation: Adapt VLM to hospital-specific data with few examples
  3. Interactive VLMs: Conversational diagnosis (like GPT-4 Vision for medicine)
  4. Federated learning: Train VLMs across hospitals without sharing patient data
  5. Continuous learning: Update VLM as medical knowledge evolves

CLIP - Foundation VLM architecture

Contrastive Learning - Training objective

Multimodal Foundations - Fusion strategies

Vision Transformers - Alternative vision encoder

Medical Imaging - Vision encoder details

Clinical NLP - Text encoder details

Multimodal Fusion - Beyond two modalities

Learning Resources

Key Papers

  • BioViL (Boecking et al., 2022): Medical VLM from Microsoft
  • MedCLIP (Wang et al., 2022): Semantic matching for medical images
  • BiomedCLIP (Tiu et al., 2023): Large-scale biomedical VLM
  • ConVIRT (Zhang et al., 2020): Early medical CLIP variant

Datasets

  • MIMIC-CXR: 377,000 chest X-rays with radiology reports
  • OpenI: 7,470 chest X-rays with reports from Indiana University
  • PadChest: 160,000 chest X-rays with Spanish reports
  • Roco: 81,000 radiology images with captions

Code

  • Hugging Face Medical VLMs: Pre-trained BiomedCLIP, MedCLIP
  • CLIP: Official OpenAI implementation (adapt for medical data)